Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Total Environ ; 912: 169346, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38097081

RESUMO

Amid global environmental concerns, the issue of bamboo expansion has garnered significant attention due to its extensive and profound impacts on the ecosystems. Bamboo expansion occurs in native and introduced habitats worldwide, particularly in Asia. However, the effects of bamboo expansion on soil pH, nutrient levels, and microbial communities are complex and vary across different environments. To address this knowledge gap, we conducted a meta-analysis with 2037 paired observations from 81 studies. The results showed that soil pH increased by 6.99 % (0-20 cm) and 4.49 % (20-40 cm) after bamboo expansion. Notably, soil pH increased more in the coniferous forest with bamboo expansion than in the broadleaf forest. Soil pH progressively increased over time since the establishment of bamboo stands. The extent of soil pH elevation was significantly positively correlated with the proportion of bamboo within the forest stand and mean annual solar radiation. In contrast, it was significantly negatively correlated with the mean annual temperature. The elevation of pH is closely related to expansion stage and expanded forest type rather than primarily shaped by climatic factors across a large scale. We also found that bamboo expansion into coniferous forests brought about a notable 14.14 % reduction in total nitrogen (TN). Varied expansion stages resulted in TN reductions of 6.88 % and 7.99 % for mixed forests and bamboo stands, respectively, compared to native forests. Pure bamboo stands exhibited a remarkable 30.39 % increase in ammonium nitrogen and a significant 21.12 % decrease in nitrate nitrogen compared to their native counterparts. Furthermore, bamboo expansion contributed to heightened soil fungal diversity. Taken together, our findings highlight that bamboo expansion leads to an increase in soil pH and alters soil N components and fungal microbial communities, providing valuable insights for future ecological conservation and resource management.


Assuntos
Microbiota , Solo , Poaceae , Florestas , Nitrogênio/análise , Nutrientes/análise , Microbiologia do Solo , Concentração de Íons de Hidrogênio , China , Carbono/análise
3.
Autophagy ; 19(11): 2853-2868, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434364

RESUMO

ABBREVIATIONS: Baf A1: bafilomycin A1; GABARAP: GABA type A receptor-associated protein; GFP: green fluorescent protein; IFN: interferon; IKBKE/IKKi: inhibitor of nuclear factor kappa B kinase subunit epsilon; IRF3: interferon regulatory factor 3; ISG: interferon-stimulated gene; ISRE: IFN-stimulated response element; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; PAMPs: pathogen-associated molecule patterns; RIGI/DDX58: RNA sensor RIG-I; SeV: Sendai virus; siRNA: small interfering RNA; TBK1: TANK binding kinase 1; WT: wild-type; VSV: vesicular stomatitis virus.


Assuntos
Antivirais , Transdução de Sinais , Autofagia , Imunidade Inata , Interferons , Humanos , Animais , Camundongos
4.
Front Immunol ; 14: 1162211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251408

RESUMO

Spatiotemporal separation of cellular components is vital to ensure biochemical processes. Membrane-bound organelles such as mitochondria and nuclei play a major role in isolating intracellular components, while membraneless organelles (MLOs) are accumulatively uncovered via liquid-liquid phase separation (LLPS) to mediate cellular spatiotemporal organization. MLOs orchestrate various key cellular processes, including protein localization, supramolecular assembly, gene expression, and signal transduction. During viral infection, LLPS not only participates in viral replication but also contributes to host antiviral immune responses. Therefore, a more comprehensive understanding of the roles of LLPS in virus infection may open up new avenues for treating viral infectious diseases. In this review, we focus on the antiviral defense mechanisms of LLPS in innate immunity and discuss the involvement of LLPS during viral replication and immune evasion escape, as well as the strategy of targeting LLPS to treat viral infectious diseases.


Assuntos
Antivirais , Núcleo Celular , Imunidade
5.
Signal Transduct Target Ther ; 8(1): 170, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100798

RESUMO

Currently, the incidence and fatality rate of SARS-CoV-2 remain continually high worldwide. COVID-19 patients infected with SARS-CoV-2 exhibited decreased type I interferon (IFN-I) signal, along with limited activation of antiviral immune responses as well as enhanced viral infectivity. Dramatic progresses have been made in revealing the multiple strategies employed by SARS-CoV-2 in impairing canonical RNA sensing pathways. However, it remains to be determined about the SARS-CoV-2 antagonism of cGAS-mediated activation of IFN responses during infection. In the current study, we figure out that SARS-CoV-2 infection leads to the accumulation of released mitochondria DNA (mtDNA), which in turn triggers cGAS to activate IFN-I signaling. As countermeasures, SARS-CoV-2 nucleocapsid (N) protein restricts the DNA recognition capacity of cGAS to impair cGAS-induced IFN-I signaling. Mechanically, N protein disrupts the assembly of cGAS with its co-factor G3BP1 by undergoing DNA-induced liquid-liquid phase separation (LLPS), subsequently impairs the double-strand DNA (dsDNA) detection ability of cGAS. Taken together, our findings unravel a novel antagonistic strategy by which SARS-CoV-2 reduces DNA-triggered IFN-I pathway through interfering with cGAS-DNA phase separation.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , COVID-19/genética , DNA , DNA Helicases/genética , Interferon Tipo I/genética , Proteínas do Nucleocapsídeo/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , SARS-CoV-2/genética
6.
Mol Cell ; 83(2): 298-313.e8, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36603579

RESUMO

Post-translational modifications (PTMs) of proteins are crucial to guarantee the proper biological functions in immune responses. Although protein phosphorylation has been extensively studied, our current knowledge of protein pyrophosphorylation, which occurs based on phosphorylation, is very limited. Protein pyrophosphorylation is originally considered to be a non-enzymatic process, and its function in immune signaling is unknown. Here, we identify a metabolic enzyme, UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1), as a pyrophosphorylase for protein serine pyrophosphorylation, by catalyzing the pyrophosphorylation of interferon regulatory factor 3 (IRF3) at serine (Ser) 386 to promote robust type I interferon (IFN) responses. Uap1 deficiency significantly impairs the activation of both DNA- and RNA-viruse-induced type I IFN pathways, and the Uap1-deficient mice are highly susceptible to lethal viral infection. Our findings demonstrate the function of protein pyrophosphorylation in the regulation of antiviral responses and provide insights into the crosstalk between metabolism and innate immunity.


Assuntos
Fator Regulador 3 de Interferon , Interferon Tipo I , Animais , Camundongos , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Fosforilação , Transdução de Sinais , Galactosiltransferases/metabolismo
7.
Sci Total Environ ; 865: 161190, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36581287

RESUMO

The substantial spatial and temporal variability of pesticides has led to large uncertainties when determining their peak aqueous concentrations. There is however a lack of large-scale studies dealing with accurate determination of annual maximum daily concentration (AMDC) across the landscape and over time based on the publicly available monitoring data. We developed a novel data-driven approach that firstly used time series modeling to generate AMDCs for qualified water monitoring sites in the conterminous U.S. With feature variables such as pesticide use and land cover compiled into the dataset, machine learning models using eXtreme Gradient Boosting (XGBoost) and Random Forest Regressor (RF) were then developed to estimate AMDCs in surface waters across the U.S. Both models exhibited significant predictability, while a hybrid model consisting of the average predictions by XGBoost and RF model had the highest prediction accuracy (mean absolute error (MAE): 1.23; R2: 0.61). The analysis of permutation variable importance indicated that pesticide use and drainage area were the two most important drivers. Partial dependence analysis revealed that pesticide use, precipitation, cultivated crop land cover and solubility exhibited concentration-promoting effects, whereas drainage area and molecular weight had concentration-demoting effects. Soil adsorption coefficient (Koc) showed nonmonotonic effects. The hybrid model was used to predict and map AMDCs of four example pesticides, including 2,4-dichlorophenoxyacetic acid (2,4-D), atrazine, glyphosate and imidacloprid during 2016-2019 at national scale. The predictive capability was validated using independent monitoring datasets. The fully evaluated approach significantly reduced the uncertainties in modeling annual peak concentrations and served as a valuable solution for conducting geographically oriented, highly refined exposure assessments for pesticides.


Assuntos
Atrazina , Herbicidas , Praguicidas , Humanos , Praguicidas/análise , Água/análise , Monitoramento Ambiental , Herbicidas/análise , Atrazina/análise
8.
Nat Commun ; 13(1): 5204, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057605

RESUMO

In addition to investigating the virology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), discovering the host-virus dependencies are essential to identify and design effective antiviral therapy strategy. Here, we report that the SARS-CoV-2 entry receptor, ACE2, conjugates with small ubiquitin-like modifier 3 (SUMO3) and provide evidence indicating that prevention of ACE2 SUMOylation can block SARS-CoV-2 infection. E3 SUMO ligase PIAS4 prompts the SUMOylation and stabilization of ACE2, whereas deSUMOylation enzyme SENP3 reverses this process. Conjugation of SUMO3 with ACE2 at lysine (K) 187 hampers the K48-linked ubiquitination of ACE2, thus suppressing its subsequent cargo receptor TOLLIP-dependent autophagic degradation. TOLLIP deficiency results in the stabilization of ACE2 and elevated SARS-CoV-2 infection. In conclusion, our findings suggest selective autophagic degradation of ACE2 orchestrated by SUMOylation and ubiquitination as a potential way to combat SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Autofagia , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo
9.
Front Microbiol ; 13: 889693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865923

RESUMO

In the past decade, dengue virus infection is one of the most prevalent and rapidly spreading arthropod-borne diseases worldwide with about 400 million infections every year. Although it has been reported that the dengue virus could take advantage of autophagy to promote its propagation, the association between selective autophagy and the dengue virus remains largely unclear. Here, we demonstrated that dengue virus capsid protein, the key viral protein for virus assembly, maturation, and replication, underwent autophagic degradation after autophagy activation. Autophagy cargo receptor p62 delivered ubiquitinated capsid protein to autophagosomes for degradation, which could be enhanced by Torin 1 treatments. Further study revealed that the association between p62 and viral capsid protein was dependent on the ubiquitin-binding domain of p62, and the poly-ubiquitin conjugated at lysine 76 of capsid protein served as a recognition signal for autophagy. Consistently, p62 deficiency in Huh7 cells led to the enhancement of dengue virus replication. Our study revealed that p62 targeted dengue virus capsid protein for autophagic degradation in a ubiquitin-dependent manner, which might uncover the potential roles of p62 in restricting dengue virus replication.

10.
Front Microbiol ; 13: 889835, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572624

RESUMO

Autophagy is an evolutionarily conserved lysosomal degradation system which can recycle multiple cytoplasmic components under both physiological and stressful conditions. Autophagy could be highly selective to deliver different cargoes or substrates, including protein aggregates, pathogenic proteins or superfluous organelles to lysosome using a series of cargo receptor proteins. During viral invasion, cargo receptors selectively target pathogenic components to autolysosome to defense against infection. However, viruses not only evolve different strategies to counteract and escape selective autophagy, but also utilize selective autophagy to restrict antiviral responses to expedite viral replication. Furthermore, several viruses could activate certain forms of selective autophagy, including mitophagy, lipophagy, aggrephagy, and ferritinophagy, for more effective infection and replication. The complicated relationship between selective autophagy and viral infection indicates that selective autophagy may provide potential therapeutic targets for human infectious diseases. In this review, we will summarize the recent progress on the interplay between selective autophagy and host antiviral defense, aiming to arouse the importance of modulating selective autophagy as future therapies toward viral infectious diseases.

11.
Nucleic Acids Res ; 50(5): 2509-2521, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35234938

RESUMO

Upon SARS-CoV-2 infection, viral intermediates specifically activate the IFN response through MDA5-mediated sensing and accordingly induce ADAR1 p150 expression, which might lead to viral A-to-I RNA editing. Here, we developed an RNA virus-specific editing identification pipeline, surveyed 7622 RNA-seq data from diverse types of samples infected with SARS-CoV-2, and constructed an atlas of A-to-I RNA editing sites in SARS-CoV-2. We found that A-to-I editing was dynamically regulated, varied between tissue and cell types, and was correlated with the intensity of innate immune response. On average, 91 editing events were deposited at viral dsRNA intermediates per sample. Moreover, editing hotspots were observed, including recoding sites in the spike gene that affect viral infectivity and antigenicity. Finally, we provided evidence that RNA editing accelerated SARS-CoV-2 evolution in humans during the epidemic. Our study highlights the ability of SARS-CoV-2 to hijack components of the host antiviral machinery to edit its genome and fuel its evolution, and also provides a framework and resource for studying viral RNA editing.


Assuntos
COVID-19/imunologia , Imunidade Inata/imunologia , Edição de RNA/imunologia , SARS-CoV-2/imunologia , Adenosina Desaminase/genética , Adenosina Desaminase/imunologia , Adenosina Desaminase/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Sequência de Bases , Sítios de Ligação/genética , COVID-19/genética , COVID-19/virologia , Evolução Molecular , Expressão Gênica/imunologia , Humanos , Imunidade Inata/genética , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/imunologia , Helicase IFIH1 Induzida por Interferon/metabolismo , Mutação , Ligação Proteica , Edição de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Homologia de Sequência do Ácido Nucleico , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
12.
Autophagy ; 18(10): 2288-2302, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35100065

RESUMO

Deubiquitination plays an important role in the regulation of the crosstalk between macroautophagy/autophagy and innate immune signaling, yet its regulatory mechanisms are not fully understood. Here we identify the deubiquitinase OTUD7B as a negative regulator of antiviral immunity by targeting IRF3 (interferon regulatory factor 3) for selective autophagic degradation. Mechanistically, OTUD7B interacts with IRF3, and activates IRF3-associated cargo receptor SQSTM1/p62 (sequestosome 1) by removing its K63-linked poly-ubiquitin chains at lysine 7 (K7) to enhance SQSTM1 oligomerization. Moreover, viral infection increased the expression of OTUD7B, which forms a negative feedback loop by promoting IRF3 degradation to balance type I interferon (IFN) signaling. Taken together, our study reveals a specific role of OTUD7B in mediating the activation of cargo receptors in a substrate-dependent manner, which could be a potential target against excessive immune responses.Abbreviations: Baf A1: bafilomycin A1; CGAS: cyclic GMP-AMP synthase; DDX58/RIG-I: DExD/H-box helicase 58; DSS: dextran sodium sulfate; DUBs: deubiquitinating enzymes; GFP: green fluorescent protein; IFN: interferon; IKKi: IKBKB/IkappaB kinase inhibitor; IRF3: interferon regulatory factor 3; ISGs: interferon-stimulated genes; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; PAMPs: pathogen-associated molecular patterns; SeV: Sendai virus; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; Ub: ubiquitin; WT: wild-type; VSV: vesicular stomatitis virus.


Assuntos
Fator Regulador 3 de Interferon , Interferon Tipo I , Antivirais , Autofagia , Enzimas Desubiquitinantes/metabolismo , Dextranos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Quinase I-kappa B , Imunidade Inata/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Lisina , Nucleotidiltransferases/metabolismo , Moléculas com Motivos Associados a Patógenos , RNA Interferente Pequeno , Proteína Sequestossoma-1/metabolismo , Ubiquitinas/metabolismo
13.
Cell Death Differ ; 29(1): 40-53, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34257412

RESUMO

As a core kinase of antiviral immunity, the activity and stability of TANK-binding kinase 1 (TBK1) is tightly controlled by multiple post-translational modifications. Although it has been demonstrated that TBK1 stability can be regulated by ubiquitin-dependent proteasome pathway, it is unclear whether another important protein degradation pathway, autophagosome pathway, can specifically affect TBK1 degradation by cargo receptors. Here we report that E3 ubiquitin ligase NEDD4 functions as a negative regulator of type I interferon (IFN) signaling by targeting TBK1 for degradation at the late stage of viral infection, to prevent the host from excessive immune response. Mechanically NEDD4 catalyzes the K27-linked poly-ubiquitination of TBK1 at K344, which serves as a recognition signal for cargo receptor NDP52-mediated selective autophagic degradation. Taken together, our study reveals the regulatory role of NEDD4 in balancing TBK1-centered type I IFN activation and provides insights into the crosstalk between selective autophagy and antiviral signaling.


Assuntos
Interferon Tipo I , Proteínas Serina-Treonina Quinases/metabolismo , Interferon Tipo I/metabolismo , Macroautofagia , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
14.
Sci Rep ; 11(1): 13677, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211072

RESUMO

Foam targets are expected to be more efficient candidates than solid targets for laser produced plasma (LPP) for extreme ultraviolet (EUV) and X-ray radiation sources due to the expected plasma conditions that can be optimized regarding plasma opacities, volumetrics heating effects, and the produced ions debris characteristics. In this paper, a comparison of ion dynamics between low-density foam and solid Ni plasma was systematically investigated at CMUXE. The foam Ni target (density 0.6 g/cm3) and solid Ni target (density 8.9 g/cm3) were irradiated with 1064 nm Nd:YAG laser in vacuum. A Faraday cup (FC) was used to record the ion flux and time-of-flight (TOF) signals. A lower and wider TOF signal was observed for foam Ni plasma on the time scale. The average ion energy and peak of the TOF signal of solid Ni plasma were much higher than that of the foam Ni plasma. However, the total charge values between foam and solid Ni plasma were comparable indicating a more volumetric absorption of laser energy for foam Ni. The average ion energy and peak of the TOF signal of solid Ni showed a stronger angular and laser energy dependence than that of foam Ni. The plume shape of the solid Ni plasma appeared as an oblong ellipse at each time, while that of foam Ni plasma tended to be more circular, especially at early times. The results of mass ablation rate were consistent with the FC signals and showed a more intense plasma shielding for solid Ni.

15.
Environ Int ; 156: 106748, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34256300

RESUMO

To effectively incorporate in vitro-in silico-based methods into the regulation of consumer product safety, a quantitative connection between product phthalate concentrations and in vitro bioactivity data must be established for the general population. We developed, evaluated, and demonstrated a modeling framework that integrates exposure and pharmacokinetic models to convert product phthalate concentrations into population-scale risks for phthalates and their substitutes. A probabilistic exposure model was developed to generate the distribution of multi-route exposures based on product phthalate concentrations, chemical properties, and human activities. Pharmacokinetic models were developed to simulate population toxicokinetics using Bayesian analysis via the Markov chain Monte Carlo method. Both exposure and pharmacokinetic models demonstrated good predictive capability when compared with worldwide studies. The distributions of exposures and pharmacokinetics were integrated to predict the population distributions of internal dosimetry. The predicted distributions showed reasonable agreement with the U.S. biomonitoring surveys of urinary metabolites. The "source-to-outcome" local sensitivity analysis revealed that food contact materials had the greatest impact on body burden for di(2-ethylhexyl) adipate (DEHA), di-2-ethylhexyl phthalate (DEHP), di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH), and di(2-propylheptyl) phthalate (DPHP), whereas the body burden of diethyl phthalate (DEP) was most sensitive to the concentration in personal care products. The upper bounds of predicted plasma concentrations showed no overlap with ToxCast in vitro bioactivity values. Compared with the in vitro-to-in vivo extrapolation (IVIVE) approach, the integrated modeling framework has significant advantages in mapping product phthalate concentrations to multi-route risks, and thus is of great significance for regulatory use with a relatively low input requirement. Further integration with new approach methodologies will facilitate these in vitro-in silico-based risk assessments for a broad range of products containing an equally broad range of chemicals.


Assuntos
Dietilexilftalato , Exposição Ambiental , Teorema de Bayes , Monitoramento Biológico , Exposição Ambiental/análise , Humanos , Ácidos Ftálicos
17.
Signal Transduct Target Ther ; 6(1): 167, 2021 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-33895773

RESUMO

The ongoing 2019 novel coronavirus disease (COVID-19) caused by SARS-CoV-2 has posed a worldwide pandemic and a major global public health threat. The severity and mortality of COVID-19 are associated with virus-induced dysfunctional inflammatory responses and cytokine storms. However, the interplay between host inflammatory responses and SARS-CoV-2 infection remains largely unknown. Here, we demonstrate that SARS-CoV-2 nucleocapsid (N) protein, the major structural protein of the virion, promotes the virus-triggered activation of NF-κB signaling. After binding to viral RNA, N protein robustly undergoes liquid-liquid phase separation (LLPS), which recruits TAK1 and IKK complex, the key kinases of NF-κB signaling, to enhance NF-κB activation. Moreover, 1,6-hexanediol, the inhibitor of LLPS, can attenuate the phase separation of N protein and restrict its regulatory functions in NF-κB activation. These results suggest that LLPS of N protein provides a platform to induce NF-κB hyper-activation, which could be a potential therapeutic target against COVID-19 severe pneumonia.


Assuntos
COVID-19/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , NF-kappa B/metabolismo , RNA Viral/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais , Células A549 , Acrilatos/farmacologia , Animais , COVID-19/patologia , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Fosfoproteínas/metabolismo , Células Vero , Tratamento Farmacológico da COVID-19
18.
Autophagy ; 17(6): 1367-1378, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32453962

RESUMO

Macroautophagy/autophagy, a eukaryotic homeostatic process that sequesters cytoplasmic constituents for lysosomal degradation, is orchestrated by a number of autophagy-related (ATG) proteins tightly controlled by post-translational modifications. However, the involvement of reversible ubiquitination in the regulation of autophagy remains largely unclear. Here, we performed a single-guide RNA-based screening assay to investigate the functions of deubiquitinating enzymes (DUBs) in regulating autophagy. We identified previously unrecognized roles of several DUBs in modulating autophagy at multiple levels by targeting various ATG proteins. Mechanistically, we demonstrated that STAMBP/AMSH (STAM-binding protein) promotes the stabilization of ULK1 by removing its lysine 48 (K48)-linked ubiquitination, whereas OTUD7B mediates the degradation of PIK3 C3 by enhancing its K48-linked ubiquitination, thus positively or negatively affects autophagy flux, respectively. Together, our study elaborated on the broad involvement of DUBs in regulating autophagy and uncovered the critical roles of the reversible ubiquitination in the modification of ATG proteins.Abbreviations: ATG: autophagy-related; Baf A1: bafilomycin A1; DUB: deubiquitinating enzyme; EBSS: Earle's balanced salt solution; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; OTUD7B: OTU domain-containing protein 7B; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; sgRNA: single-guide RNA; SQSTM1/p62: sequestosome 1; STAMBP/AMSH: STAM-binding protein; ULK1: unc-51 like autophagy activating kinase 1; USP: ubiquitin specific peptidase.


Assuntos
Autofagia/fisiologia , Ensaios de Triagem em Larga Escala , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Endopeptidases/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Humanos , Lisossomos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia
19.
Autophagy ; 17(6): 1379-1392, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32476569

RESUMO

IRF3 (interferon regulatory factor 3) is one of the most critical transcription factors in antiviral innate immune signaling, which is ubiquitously expressed in a variety of cells. Although it has been demonstrated that IRF3 can provoke multiple cellular processes during viral infection, including type I interferon (IFN) production, the mechanisms underlying the precise regulation of IRF3 activity are still not completely understood. Here, we report that selective macroautophagy/autophagy mediated by cargo receptor CALCOCO2/NDP52 promotes the degradation of IRF3 in a virus load-dependent manner. Deubiquitinase PSMD14/POH1 prevents IRF3 from autophagic degradation by cleaving the K27-linked poly-ubiquitin chains at lysine 313 on IRF3 to maintain its basal level and IRF3-mediated type I IFN activation. The autophagic degradation of IRF3 mediated by PSMD14 or CALCOCO2 ensures the precise control of IRF3 activity and fine-tunes the immune response against viral infection. Our study reveals the regulatory role of PSMD14 in balancing IRF3-centered IFN activation with immune suppression and provides insights into the crosstalk between selective autophagy and type I IFN signaling.Abbreviations: ATG5: autophagy related gene 5; Baf A1: bafilomycin A1; BECN1: beclin 1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CGAS: cyclic GMP-AMP synthase; DDX58/RIG-I: DExD/H-box helicase 58; DUBs: deubiquitinating enzymes; IFN: interferon; IRF3: interferon regulatory factor 3; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; PAMPs: pathogen-associated molecule patterns; PBMC: peripheral blood mononuclear cell; PSMD14/POH1: proteasome 26S subunit, non-ATPase 14; RIPA: RLR-induced IRF3-mediated pathway of apoptosis; SeV: Sendai virus; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; Ub: ubiquitin; WT: wild type.


Assuntos
Autofagia/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Leucócitos Mononucleares/metabolismo , Humanos , Imunidade Inata/imunologia , Fator Regulador 3 de Interferon/imunologia , Interferon Tipo I/imunologia , Leucócitos Mononucleares/imunologia , Macroautofagia/imunologia , Transativadores/metabolismo , Viroses/imunologia
20.
Adv Sci (Weinh) ; 7(22): 2002680, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33240782

RESUMO

Chromatin modifications, such as histone acetylation, ubiquitination, and methylation, play fundamental roles in maintaining chromatin architecture and regulating gene transcription. Although their crosstalk in chromatin remodeling has been gradually uncovered, the functional relationship between histone ubiquitination and methylation in regulating immunity and inflammation remains unclear. Here, it is reported that USP38 is a novel histone deubiquitinase that works together with the histone H3K4 modifier KDM5B to orchestrate inflammatory responses. USP38 specifically removes the monoubiquitin on H2B at lysine 120, which functions as a prerequisite for the subsequent recruitment of demethylase KDM5B to the promoters of proinflammatory cytokines Il6 and Il23a during LPS stimulation. KDM5B in turn inhibits the binding of NF-κB transcription factors to the Il6 and Il23a promoters by reducing H3K4 trimethylation. Furthermore, USP38 can bind to KDM5B and prevent it from proteasomal degradation, which further enhances the function of KDM5B in the regulation of inflammation-related genes. Loss of Usp38 in mice markedly enhances susceptibility to endotoxin shock and acute colitis, and these mice display a more severe inflammatory phenotype compared to wild-type mice. The studies identify USP38-KDM5B as a distinct chromatin modification complex that restrains inflammatory responses through manipulating the crosstalk of histone ubiquitination and methylation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...